4 resultados para Cell proliferation Mathematical models

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transdermal biotechnologies are an ever increasing field of interest, due to the medical and pharmaceutical applications that they underlie. There are several mathematical models at use that permit a more inclusive vision of pure experimental data and even allow practical extrapolation for new dermal diffusion methodologies. However, they grasp a complex variety of theories and assumptions that allocate their use for specific situations. Models based on Fick's First Law found better use in contexts where scaled particle theory Models would be extensive in time-span but the reciprocal is also true, as context of transdermal diffusion of particular active compounds changes. This article reviews extensively the various theoretical methodologies for studying dermic diffusion in the rate limiting dermic barrier, the stratum corneum, and systematizes its characteristics, their proper context of application, advantages and limitations, as well as future perspectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study a delay mathematical model for the dynamics of HIV in HIV-specific CD4 + T helper cells. We modify the model presented by Roy and Wodarz in 2012, where the HIV dynamics is studied, considering a single CD4 + T cell population. Non-specific helper cells are included as alternative target cell population, to account for macrophages and dendritic cells. In this paper, we include two types of delay: (1) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and; (2) virus production period for new virions to be produced within and released from the infected cells. We compute the reproduction number of the model, R0, and the local stability of the disease free equilibrium and of the endemic equilibrium. We find that for values of R0<1, the model approaches asymptotically the disease free equilibrium. For values of R0>1, the model approximates asymptotically the endemic equilibrium. We observe numerically the phenomenon of backward bifurcation for values of R0⪅1. This statement will be proved in future work. We also vary the values of the latent period and the production period of infected cells and free virus. We conclude that increasing these values translates in a decrease of the reproduction number. Thus, a good strategy to control the HIV virus should focus on drugs to prolong the latent period and/or slow down the virus production. These results suggest that the model is mathematically and epidemiologically well-posed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), and its metabolites p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), and p,p′-dichlorodiphenyldichloroethane (p,p′-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p′-DDT, p,p′-DDE, and p,p′-DDD (50–1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years marine biotechnology has revealed a crucial role in the future of bioindustry. Among the many marine resources, cyanobacteria have shown great potential in the production of bioactive compounds with diverse applicability. The pharmacological potential of these organisms has been one of the most explored areas in particular its antibacterial, antifungal and anticancer potential. This work was based on the assessment of potential anticancer compound E13010 F 5.4 isolated from marine cyanobacteria strain Synechocystis salina LEGE 06099. Thus the aim of this work was to explore molecular and biochemical mechanisms underlying the bioactivity detected in human cancer cells, specifically in lines RKO colon carcinoma and HT-29. The isolation of the compound was performed from biomass obtained by large-scale culture. To obtain the compound fractionation was carried and confirmation and isolation performed by Nuclear Magnetic Resonance (NMR), Thin Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC). Cell viability assays were performed based on reduction of 3- (4,5-dimetiltiaziol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) to assess the cytotoxic potential of the compound. From the battery of cell lines RKO (colon carcinoma), HT-29 (colorectal adenocarcinoma), MG-63 (osteosarcoma) and T47D (breast carcinoma) the cell lines RKO and HT-29 were selected for elucidation of mechanisms of cytotoxicity. For the elucidation of the mechanisms involved in cytotoxicity the cell lines RKO and HT29 were exposed to the compound. A genomic approach based in the mRNA expression of genes involved in apoptosis and cell cycle by Real-Time PCR and a proteomic approach based on the separation of proteins by two-dimensional electrophoresis (2DGE) was performed. For mRNA expression were selected the genes RPL8, HPRT1, VDAC, SHMT2, CCNE, CCNB1, P21CIP, BCL-2 and BAD and for proteomics isoelectric focussing between 3 – 10 and molecular weight of 19 – 117 kDa separated by polyacrylamide gels (2DGE). The MTT results confirmed the reduction of the cell viability. The RT-PCR results for the expression of genes studied were not yet fully elucidative. For the cell line RKO there was a significant reduction in the expression of the gene P21CIP, and a tendency for reduction in the BAD gene expression and for increased expression of gene CCNB1, pointing to an effort for cell proliferation. In HT-29 cell line, there was a tendency for increase in the expression of P21CIP and BAD, which may explain the reduction in cell viability. The 2DGE results indicate proteomic patterns with differentially altered spots in the treated and control cells with both qualitative and quantitative differences, and differences in response between the RKO and HT-29 cell lines.